Star Oilco

about-diesel-fuel
About Diesel Fuel 1024 512 Star Oilco

About Diesel Fuel

Bulk Diesel Fuel Frequently Asked Questions

Ultra Low Sulfur Diesel is 15 PPMDyed Off-Road Diesel

Where your diesel comes from and what you need to know about ASTM Diesel Standards and ISO cleanliness code.

Where do Pacific Northwest vendors get their fuel?

In the Pacific Northwest, diesel is fungible. Everyone buys their fuel from each other in some way or another.  

This means that every refiner is typically expecting to mix their diesel and gasoline products. The real difference is in the care a vendor takes to filter the fuel, additize and continuously check their fuel quality. If you are buying at the absolute lowest price possible, know that there is an incentive to skip any added value of quality assurance.

Through its Pacific Operations unit, Kinder Morgan operates approximately 3,000 miles of refined products pipeline that serves Arizona, California, Nevada, New Mexico, Oregon, Washington and Texas. With roots dating back to 1956, it is the largest products pipeline in the Western U.S., transporting more than one million barrels per day of gasoline, jet fuel and diesel fuel to our customers. The company-owned terminals also provide additional services, such as liquid petroleum product storage and loading facilities for delivery trucks.

Diesel Fuels

In the United States, diesel fuel is controlled according the American Society for Testing and Materials Standard D975-97.  This standard describes a limited number of properties that diesel fuels must meet.  It should be noted that the requirements are all performance- based.  They do not mandate the composition of the fuel, only the specific performance related requirements demanded of a fuel for a diesel engine.  The requirements of D975 are described below. 

ASTM Specifications for Diesel Fuel Oils (D975)*

* You can go to the source of ASTM HERE if you have an interest in really getting in depth.

Diesel fuel is characterized in the United States by the ASTM standard D975.  This standard identifies five grades of diesel fuel. We are only going to talk about the two most popular commercially diesel fuel used — No 1 and No. 2 diesel. The ASTM D975 standard is made up of a series of different tests that check the characteristic ranges of a fuel to confirm it is adequate to operate in your equipment. In simple terms, they are checking for specific gravity, the vapor point (when it turns into a gas), the flash point (when it catches fire), the dirt content, water content (how much microscopic entrained water), and a host of other requirements diesel must meet in order to be legal to be sold for use in your engine.

Grade No. 1-D and Ultra-Low Sulfur 1-D: This is a light distillate fuel for applications requiring a higher volatility fuel to accommodate rapidly fluctuating loads and speeds, as in light trucks and buses. The specification for this grade of diesel fuel overlaps with kerosene and jet fuel, and all three are commonly produced from the same base stock. One major use for No. 1-D diesel fuel is to blend with No. 2-D during winter to provide improved cold flow properties.  Ultra Ultra-Low sulfur fuel is required for on-highway use with sulfur level < 0.05%. 

Grade No. 2-D and Ultra-Low Sulfur 2-D:  This is a middle- or mid-grade distillate fuel for applications that do not require a high volatility fuel. Typical applications include high-speed engines that operate for sustained periods at high load. Ultra-Low sulfur fuel is required for on-highway use with sulfur level < 0.05%.

RecologyDealing with Dirty Fuel and Today’s Tier 4 Engines

Water and dirt are the biggest concerns for fuel quality. Why? Because no matter how perfect fuel is refined, these two elements can find their way into fuel and crash its performance. Water and dirt often build up in tanks just from the temperature change between night and day, causing a bulk fuel tank to breathe. Condensation and dust can also find their way into a bulk storage tank. If not addressed, they build up and will cause mechanical failures.

Dirty fuel will cause premature parts failure in equipment of any age. But newer equipment has far tighter tolerances than what we saw in previous decades. Today’s new and improved Tier 4 rail injector engines are more efficient, they burn cleaner, and run better, they are more powerful than ever before. But there are things that make fuel quality more important than ever. Because of the extremely high pressures (upwards of 35,000psi at the injector tip), the possibility of damage from dirty wet fuel is more prevalent than ever. This damage is much more pronounced in newer equipment with High Pressure Common Rail (HPCR) fuel systems. Hard particulate is commonly referred to as “dirt,” but is in fact made up of a wide variety of materials found at job sites (coal, iron, salt, etc.), generated by fuel tanks and lines (rust, corrosion, etc.) and inside engines (carbonaceous materials and wear particles).

Frequent diesel fuel filter changes — as well as the expensive, and time consuming, task of cleaning diesel fuel tanks — have become acceptable periodic maintenance, instead of a warning signal, for diesel engine failure. Diesel fuel filter elements should last a thousand hours or more, and injectors should endure 15,000 hours. However, since diesel fuel is inherently unstable, solids begin to form and the accumulating tank sludge will eventually clog your diesel fuel filters, ruin your injectors and cause diesel engines to smoke.

Symptoms

  • Clogged and slimy filters
  • Dark, hazy fuel
  • Floating debris in tanks
  • Sludge build up in tanks
  • Loss of power and RPM
  • Excessive smoke
  • Corroded, pitted injectors
  • Foul odor

The solids that form as the result of the inherent instability of the diesel fuel and the debris formed in the natural process of fuel degradation will accumulate in the bottom of your fuel tank. The sludge will form a coating or “bio-film” on the walls and baffles of the fuel tank, plug your fuel filters, adversely impact combustion efficiency, produce dark smoke from the exhaust, form acids that degrade injectors and fuel pumps, and impact performance. Eventually, fouled diesel fuel will clog fuel lines and ruin your equipment.

The Bigger Picture: ISO (International Standardization Organization)ISO Chart 1

In today’s world, the definition of what constitutes clean or dirty fuel is critically important and, as such, fuel cleanliness levels are now measured and reported according to the ISO Cleanliness Code 4406:1999. The International Organization for Standardization (ISO) created the cleanliness code to quantify particulate contamination levels per milliliter of fluid at three sizes: 4μ, 6μ, 14μ. Microns.

Fuel Cleanliness vs. Engine Technology

Fuel cleanliness levels using the ISO4406:1999 method were officially documented as a global standard only as recently as 1998 with the development of the Worldwide Fuels Charter (WWFC). Since its inception, the charter has established a minimum cleanliness level for each of the diesel fuels under various available categories around the world.

Most mainstream engine OEM’s now subscribe to these standards. Interestingly (and somewhat troubling to note), however, is that fuel cleanliness levels as specified by engine OEM’s and the WWFC have not changed since their inception in 1998, despite the enormous advances in fuel injection technology. This relationship is best represented in the previous table that identifies the advances in fuel injection systems and clearly highlights how OEM’s and the WWFC have not responded to reduce fuel cleanliness in accordance with advancements in technology.

Diesel Fuel Injection – Advancing Technologies & Cleanliness Levels

ISO Chart 4This table  identifies that, over time, fuel injector critical clearances have halved and fuel pressures have doubled, yet the level of fuel cleanliness being specified has not changed in accordance with such advancements. In fact, the same cleanliness levels specified in 2000 are still being used today despite these magnificent technological design advancements by engine manufacturers worldwide.

Leading fuel injector manufacturers around the world have clearly identified and communicated that they require ULSD fuels with ISO fuel cleanliness levels as low as ISO12/9/6 to maintain ultimate performance and reliability. It is here where we see an enormous mismatch in what the fuel injection OEM desires as a fuel cleanliness level, to what the engine OEM’s and the WWFC are advising the industry. The following table identifies the discrepancies in fuel cleanliness levels.

Diesel Cleanliness Levels

 ISO Chart 3                        

 

 

 

 

 

WWFC Diesel Category Fuel Cleanliness Standards                                                                                                      ISO Chart 5

 

 

 

 

Damage Caused by Hard Particulate

Hard particulates cause problems with moving parts in the fuel system. This can lead to starting problems, poor engine performance, idling issues and, potentially, complete engine failure. All too common, hard particulates damage engines.

The spray pattern generated by the HPCR injector is critical for proper combustion and overall fuel system performance. (1) sm-injector-with-red-light-Bosch

It must be extremely precise in terms of quantity, distribution and timing. Ball seat valves are sealed with balls that are only 1mm in diameter. A good seal is absolutely necessary for proper injection. Damage from erosive wear, such as shown below, will cause over fueling, leading to decreased fuel efficiency and eventually shut you down altogether.

hpcr injector damaged by hard particulate(3) high-pressure-fuel-system-wear

Pump performance can also be compromised by scoring and abrasive wear. These issues are magnified by tighter tolerances and extreme pressures in HPCR engines. In these circumstances, it is the smallest particles (1-5 microns in size) that cause the most damage, virtually sand blasting part surfaces.

Allowable Levels of Hard Particulate 

(4) dirt-in-vs-allowed-in-1000-gal-dieselIn some parts of the world, 10,000 gallons (38,000 liters) of “typical” diesel contains 1-1/2 lbs (700 grams) of hard particulate; this is 1000 times more than the 1/4 oz. (0.7 grams) per 10,000 gallons (38,000 liters) that is allowed by the cleanliness requirements of high pressure common rail fuel systems. In reality, there is no “OK” level of hard particulate. Injector manufacturers are very clear that damage caused by hard particulate reaching the engine is not a factory defect, but rather the result of dirty diesel that is not fit for use in HPCR fuel systems. At the end of the day, the end user is responsible for the fuel he puts into his equipment, and the consequences thereof.

How Dirt Enters Fuel

Dust and dirt are all around us, especially on job sites. Diesel fuel is fairly clean when it leaves the refinery but becomes contaminated each time it is transferred or stored. Below you will find some of the key contributors of fuel contamination:

Pipelines: Most pipelines are not new, and certainly not in pristine condition. Corrosion inhibitors are added at most refineries to help protect pipelines, but rust and other hard particulate is nevertheless picked up by the fuel that flows through them.

Barges and rail cars: How often are they drained and scrubbed out? What was in the last load? Where did it come from? How much of it was still in the tank when your load was picked up? How long was it in transit? Is the tank hermetically sealed? There are many opportunities for contaminants to make their way into the fuel.

Terminal tanks: Terminal tanks usually see a high rate of turnover, so there is not much time for the fuel to pick-up contamination from outside ingress. Has the tank ever received a “bad load” from a pipeline or a barge? Has larger dirt had a chance to settle on the bottom of the tank? How often has it been cleaned out? Was it just filled? Did the bottom get churned up in the process? How full was the tank when your fuel was loaded into the delivery truck? There are many variables that can affect fuel cleanliness.

Delivery trucks: All the same issues that apply to stationary tanks also apply to tanker trucks, except that truck tanks never get a chance to settle. In addition, have you ever considered how much dirt gets into that tanker while it is delivering fuel to a customer, potentially a customer in an extremely dusty environment? As fuel flows out, air is sucked in to displace it. Is there anything protecting the inside of the tank from all the dust in the air? Generally not. Venting is typically completely unprotected, as seen in the image to the right.

Storage tanks: Onsite bulk storage tanks typically see less rapid turn-over than terminal tanks. In addition to those issues, yard and jobsite tanks can also develop serious problems with other sources of contamination, such as the ingress of dirt and water, condensation, rust, corrosion, microbial growth, glycerin fall-out and additive instability. Time and temperature become big factors affecting fuel quality.

Dispensing process: How far does your diesel need to travel between the bulk tank and the dispenser? The more pipe it runs though, the more potential there is for contamination. Are your dispenser nozzles kept clean? Are they ever dropped on the ground? Then what? What about the vehicles’ fuel tank inlets, are they clean? Think about the extremely tight tolerances in your fuel system, then take another look at housekeeping issues. You will see them through new eyes.

Onboard fuel tanks: Contamination continues even after the fuel is in the equipment. What has that tank seen in the past? Has it been left stagnant for long periods? What kind of protection is there on the equipment’s air intake vents? Heavy equipment does hard, dirty work.

Engines: Unfortunately, even if the fuel in your tank could be perfect, additional contamination is generated by the fuel system itself. Wear particles are created by mechanical friction. High heat and extreme pressure generated inside the modern engine, lead to coking and the creation of carbon products at the injector. Much of this internally-produced particulate is returned to the fuel tank, along with the unburned diesel.

The Bottom Line

No one gets special fuel, no one has better fuel, no one has cleaner fuel. Diesel fuel vendors get the same fuel, from the same pipeline, delivered to the same terminals. We all wait in the same lines with our tank trucks to get that same fuel. So ask yourself: Given that the fuel is the same, what sets one vendor apart from all the others? Star Oilco Premium Diesel fuel is treated with Hydrotex PowerKleen® additive running through Donaldson filtration systems.

Clean, dry, premium diesel

FURTHER READING ON DIESEL FUEL:

Read about Star Oilco’s approach to Fuel Quality Assurance: Star Oilco – Precision Fuel Management

Read about dealing with biological growth in your diesel tank: Bioguard Plus 6 biocide treatment for diesel

Get Chevron’s Technical Manual to Diesel Fuel (essentially an easy to read text book on diesel): Chevron’s Fuel Technical Review

Get a white paper from Donaldson Filtration on tier 4 engines and fuel cleanliness: Donaldson on Tier 4 Engine Fuel Contamination

Read more about Donaldson Desiccant Breathers for bulk diesel tanks: Why use a Donaldson Desiccant Breather for a bulk diesel storage tank.

desiccant-filters-dry-diesel-and-keeping-your-diesel-fuel-clean
Bulk diesel desiccant filters, dry fuel, and keeping your diesel fuel clean. 1024 684 Star Oilco

Bulk diesel desiccant filters, dry fuel, and keeping your diesel fuel clean.

Bulk diesel fuel delivery and storage best practice.

Use Desiccant Breathers and Premium Diesel additives to improve your diesel performance and reduce maintenance cost.

 

Save tens of thousands on fleet maintenance costs!

How? Clean, dry, and premium-treated diesel.

Reduce injector wear and particulate trap service needs with simple steps focused on fuel quality. Get the water and dirt out of your fuel with aggressive filtration and then upgrade the fuel’s lubricity, detergency, cetane, and performance with Hyrdrotex Power Kleen premium diesel.

Call Star Oilco if you want to permanently solve bulk diesel quality issues with our Precision Fuel Management program.

Do you have a bulk diesel storage tank?

Does that tank seem to have water in the bottom of it and you can’t seem to figure out where it’s coming from?

You call your diesel supplier and they say they know it isn’t them. If that’s your experience, Star Oilco can explain where that water is probably coming from. With the help of Hydrotex, Star Oilco can also lab test your fuel quality and prove we are in improving it as well.

desiccant filter in field

All storage tanks are different. But for the most part, if your tank seems to take on water randomly. It’s probably from the tank breathing. Especially if you have a large above ground tank. In fact, if you tracked it on a calendar it probably happens the same time of year in conjunction with a weather pattern your tank responds to.

How it works is as the temperature changes the tank’s space that is not filled with fuel will breathe in and out. The temperature and air pressure move air in and out of the tank. As does dispensing fuel out of the tank and then refilling the tank. When that happens, especially if you have a significant amount of humidity in the air or misting rain, water makes it’s way into your fuel supply. As temperatures change, moisture is drawn into the tank, condenses on the inner wall of the tank, and then deposits itself on the bottom of the tank.

This water not only poses a risk to your engines, but if your fuel isn’t treated for stability and performance, that fuel is guaranteed to start growing bugs and algae that will spread throughout your fleet and will have your mechanics spinning filters and dealing with random problems due to this diesel biological growth.

This problem is also exacerbated by ineffective fuel additives trying to keep your fuel dry, clean and safe for your injectors to process, which ensures that water does not get absorbed by your diesel. A single drop of water falling out of solution in today’s high pressure fuel rails and your engine can blow an injector.

HOW DO YOU SOLVE WATER IN YOUR DIESEL TANK?

ANSWER: DESICCANT BREATHERS ON YOUR VENTS

Desiccant diagram

Star Oilco recommends Donaldson desiccant filters, given their excellent full line of products and support. More on the full Donaldson Clean Dry Fuel program here: Donaldson Clean Diesel Kits Brochure.

The Donaldson desiccant breaker mounts to the top of a tank at it’s vent point. This addition seals the point of failure for water to get into your tank. Though in some cases it doesn’t stop 100% of water from ending up in your fuel tank, it definitely guarantees you know where it won’t be coming from, the environment around your tank.

(NOTE: If dealing with underground storage tanks also be aware that if you seal the vent with a desiccant filter and you still have incident’s of water, it might be a leak in the bottom of the tank where rain water is making its way into the tank.)

By using Donaldson filters, Star Oilco also gains the benefit of support from Hydrotex PowerKleen diesel fuel lab to analyze fuel to guarantee that the before and after samples of the fuel are moving as expected and the problem is solved. Running diesel samples can cost as much as $200 each time–having a partner that backs up our solutions with ASTM and ISO measured verification is a must.

The first step in getting better performance from your diesel fuel is to test your bulk diesel storage tank.

To get a complementary ASTM diesel fuel test, contact Star Oilco for assistance.

Clean, dry, premium diesel

Tank Testing Form

  • This field is for validation purposes and should be left unchanged.

 

biodiesel-feedstocks-evening-primrose-and-fish-oil
BioDiesel Feedstocks – Evening Primrose & Fish Oil 1024 516 Star Oilco

BioDiesel Feedstocks – Evening Primrose & Fish Oil

The two feedstocks we are looking into this time are Evening-Primrose Oil and Fish Oil. Here is a link to the main page of feedstocks we have examined so far.  As we continue our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report.

Evening-Primrose Oil

The Common Evening-primrose (Oenothera biennis) is also known as evening star, sun drop, German rampion, weedy evening primrose, hog weed, King’s cure-all, or fever-plant.  This plant is native to North America and grows throughout most of the continental US and in Canada. Oenothera biennis (common evening primrose). Flowers and buds

A unique aspect of this plant is that it has a bright yellow flower blooms that is open in the evening and then is closed at noon.(source)  This plant can grow up to 6 feet tall and is a biennial, meaning it lives for 2 years flowering the second year. The plant has leafy branched stems that are ridged and usually has fine white hair.

According to Friends of the wild flower:

“The leaves are both basal and stem. Basal leaves taper to short stalks and form a rosette in the first year of growth. The stem leaves develop the second year when the flowering stem rises; they are alternate, lance-like, wavy edged, slightly toothed, slightly hairy on both surfaces, with one main central vein and fine laterals. They can be up to 8 inches long near the base and 1/4 as wide, but become considerable shorter near the top of the stem.”

A simple google search shows that this plant has medicinal uses, known by some of the indigenous tribes of North America for hundreds of years. Some of the common uses were to treat bruises with a poultice and use the leaves in a tea as a stimulant. The drug in the plant can be used as a sedative and and as an astringent. The oil the plant produces is full of fatty acids and is sold as a dietary supplement.

The roots of the plant can also be boiled and eaten if they haven’t flowered yet. The leaves of the plant can be used before flowering in salads. Even the flowers can be eaten and are said to have a sweet taste.

The ability of the plant to grow in arid conditions and not need a lot of water adds potential of this plant to provide nutrients, oil and medicinal material for drier locations.

 

Evening Primrose Oil and the Bio-Diesel it produces

Evening Primrose Certificate of Analysis

 

 

Fish Oil

The Fish Oil that REG used simply says “Fish oil was obtained from a commercially available source in Peru.”  The types of fish that are used to make fish oil in Peru are anchovy, herring, menhaden or sardines.

This source was likely the same that would be purchased to produce fish oil nutritional supplements or other food products. In the production of biodiesel there is a large potential for this product. Many of the toxins and imperfections that need to come out for human consumption wouldn’t effect the creation of biodiesel.  Fish oil that is produced in the process of fish processing has potential of removing waste from going to landfills. Several scholarly papers have been written on it.  If you would like to know a little more this article was written on the waste from salmon processing in Canada.

Fish Oil and the Fish Bio-Diesel that it produces

Fish Oil Bio-diesel Certificate of Analysis

 

Last article for biodiesel feedstocks was Coconut Oil and Coffee Oil.

keep-and-make-your-diesel-fuel-cleaner
Keep and make your diesel fuel cleaner 1024 768 Star Oilco

Keep and make your diesel fuel cleaner

Clean, dry, premium diesel

What is Clean Diesel? 

Clean diesel is free of the contaminants that harm modern diesel engines. Today, there is a gap between ASTM diesel standards and the ISO cleanliness standards needed for use in high pressure common rail engines. Anyone operating a modern clean diesel engine is seeing the effect, including injector replacement, DPF regeneration, and a host of other fuel quality related maintenance concerns we never saw twenty years ago. On top of all of that, today’s refined diesel fuels are less storage stable then ever before. What is on the bottom of your bulk tank can also complicate matters further. When diesel is bought wholesale it typically meets and exceeds ASTM required industry standards, but almost always requires additional filtration to avoid excessive engine wear and premature part failures.

Having clean diesel requires an additional amount of care. Namely, you need to make sure that the fuel is aggressively filtered at 4 microns to catch the microscopic particles that are big enough to damage your modern diesel engine’s high pressure fuel rail system. Furthermore, clean diesel is fuel that is free of water and stabilized with Premium Diesel to guarantee no bacteria, yeast and other creatures can grow and further contaminate the saddle tanks on your trucks.

For more on clean diesel, see Donaldson’s description of “The New Clean” for an in-depth explanation of what ISO cleanliness and filtration mean for your diesel fleet.

Making Diesel Cleaner!

Knowing the quality of your fuel is the first step. This is done by taking samples off of the bottom of your bulk storage, as well as a representative sample from your fuel dispenser. Lab tests of those samples will tell you if you have water, biological growth, or dirt issues with your storage. The contaminants in the tank being sampled are almost always visible, which is to say that they look horribly ugly. If your fuel quality assurance has been on autopilot, do not be surprised if you find this. After gathering knowledge about your fuel, the next step is to get your fuel quality clean.

Filtration and tank bottom sampling is the start. Beyond that, the only way to improve your fuel quality performance is to filter your fuel, ensure water is not getting into the tank through condensation, and additize it with a Premium Diesel additive to upgrade the performance of the fuel. Many fleets today are seeing injector wear and continual problems with particulate trap maintenance. This is a combination of water in fuel and microscopic particles not captured by a 10 or 30 micron filter used at most diesel dispensers. You have to filter more aggressively than this.

Clean, Dry, and Premium Diesel!  Where To Start?

The first step is sampling your bulk diesel tank. We check your bulk tank for water and dirt, and make sure to meet the specifications your engine is built for. Star Oilco can help by providing a complementary diesel test for those fleets interested in taking control of their fuel quality assurance. Usually when testing fuel, we take a sample off of the tank bottom as well as a representative sample out of the fuel dispensing nozzle.

What we usually find is ASTM specification diesel fuel (it meets ASTM spec) that is higher than you’d want (still in spec) for water with far more dirt than the OEM’s would want to see in your engine. This dirt fails to be within the “ISO Cleanliness” specifications recommended by engine manufacturers. Usually we also see water on the bottom of the fuel tank, which is a likely source for future or current biological growth in your fuel tank.

Star Oilco can help you fix this! The first step is to sample your fuel tank.

NOTE: If you have a current biological growth problem in your bulk fuel tank or fleet, your first step is to treat that effected fuel with a diesel microbiocide to kill the bugs growing in your tank. For more on this, see our Valvtect Plus 6 Diesel Microbiocide page.

Tank Testing Form

  • This field is for validation purposes and should be left unchanged.
coconut-oil-and-coffee-oil
BioDiesel Feedstocks – Coconut Oil & Coffee Oil 1024 683 Star Oilco

BioDiesel Feedstocks – Coconut Oil & Coffee Oil

We are continuing our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This week’s two feedstocks are Coconut Oil and Coffee Oil. Here is a link to the main page of feedstocks we have examined so far.

Coconut Oil

For this feedstock REG purchased refined, bleached, deodorized (RBD) coconut oil.The parts of a coconut tree.

As a background, lets talk a little bit about Coconut trees (Cocos nucifera) they are part of the palm tree family (Arecaceae) and they love sandy soils and can tolerate a high level of salt. The trees prefer regular rainfall, high humidity 70-80% and lots of sunshine.  This is why we see them on the shorelines and beaches in the warmer parts of the world. They need year round warmth and moisture to grow well and produce fruit.  The Coconut palm tree can grow up to 98 ft tall and has 13-20 ft long leaves. A tree can begin producing fruit as early as 6 years but usually take between 15 to 20 years to reach its peak producing capacity. Most trees produce about 30 fruit a year but under ideal conditions they can produce as much as 75 a year.  Coconuts can be found in more than 90 countries with most of the production coming from tropical Asia.  The Philippines, India, and Indonesia account for over 72% of the production.

Coconuts already have a variety of uses, as food, cosmetics and animal food. Virtually every part of the palm can be used by humans for economic value.

Production of the oils used for biodiesel requires the coconut meat be removed from the seeds, dried and then pressed for the oil. A coconut that is between 12 to 15 months old is best for this.  You can expect to get about 50ml of oil per nut. The remaining meal is then able to still be used as an animal feed or can even be turned into a flour for baking.

 

Coconut Oil as a feedstock for Biodiesel.

Biodiesel Certificate of Analysis for Coconut Oil Chart.

 

 

Coffee Oil

Cup of Coffee on Coffee beans, Can this be the next form of BioDiesel?Coffee comes from roasted coffee beans, these “beans” are actually the seeds from berries of the Coffea species, with the two most common species being C. arabica and C. canephora. People have been drinking coffee since the 15th century.  Coffee plants are evergreen shrubs that can grow up to 15 feet tall. They have glossy, dark-green leaves about 4 to 6 inches long.  Brazil, Vietnam, and Colombia are were most of the coffee is coming from.

Most Coffee grounds are thrown away or used as compost, but if we were to extract the oil possibilities arise. Coffee oil comes from spent coffee grounds; the grounds can contain as much as 11 to 20 percent oil. Extracting the oil doesn’t stop the grounds from being used as compost and you now have an oil that can be converted into biodiesel.  In the past the process of extracting the oil was cost prohibitive and took many steps to complete. There have been some recent advances in this process that could change this in the future. This method, if used on all coffee grounds, could produce over 286 million gallons a year of biodiesel.

 

Coffee Oil and the biodiesel that is produced from it.

Biodiesel Certificate of Analysis for Coffee Oil Chart.

 

Last article for biodiesel feedstocks was Castor Oil and Choice White Grease.

proof-precision-fuel-management-program-works-star-oilco
Star Oilco Diesel Fuel Quality Assurance 1024 574 Star Oilco

Star Oilco Diesel Fuel Quality Assurance

 

Diesel Fuel Tank Cleaner

 

  • Diesel Fuel Is Often A Company’s Largest Expense. Unfortunately, there is very little control over its quality.
  • Fuel Quality Has Declined over the last 25 years…
  • Engine manufacturers have tightened the tolerances for fuel
  • Newer tier 4 engines starting from 2008 need cleaner fuel

 

“Over the last two decades, the cetane number and the API gravity, the basic measures of crude oil quality have declined.”

—Society of Automotive Engineers, (SAE) Bulletin 872243

 

 

Cetane number is actually a measure of a fuel’s ignition delay. This is the time period between the start of injection and start of combustion (ignition) of the fuel. In a particular diesel engine, higher cetane fuels will have shorter ignition delay periods than lower cetane fuels.

So what is a typical API gravity for diesel fuel? The classic book “Petroleum Refinery Engineering” by W.L. Nelson (4th ed., McGraw-Hill, 1958) gives numbers ranging from about 25 to 40 (with “Grade 1-D” around 40 and “Grade 2-D” around 35). In a Web search using the keywords “diesel” and “API gravity” I found a couple of sites with specs for #2 diesel fuel; these had minimum values of 26 and 30 API gravity. So a reasonable guess would be that typical #2 diesel fuel would have an API gravity of about 35; I’ll let you plug that into the above formula to get the specific gravity.

The densities of petroleum products are traditionally (especially in the U.S.) expressed as “API Gravity” The API Gravity is related to the specific gravity by the equation: API = (141.5/SPGR) – 131.5, where the specific gravity is the density relative to that of water and everything is measured at a temperature of 60 degrees F.

MadSci Network © 1997, Washington University Medical School

“Diesel fuel quality has deteriorated for the past 20 years and is expected to continue this trend for the foreseeable future.”

American Society for Testing and Materials, (ASTM) Pub. # 10056

 

COMMON PROBLEMS WITH 21st CENTURY DIESEL FUEL IN THE PACIFIC NW

Fuel Quality Deterioration

industrial-townProblem 1

 

Problem 2

 

Problem 3

Problem 6a

 

 

Problem 4

 

Problem 4a

 

 

Problem 5

Problem 3b

Problem 6

The odds are stacked against the fleet owners

what can be done to help alleviate or control the problems?

you have questions, we have the solutions, call us to find out.

 CAll Today

If you have bulk fuel storage, the first step is testing your tank bottom and what is coming out of the nozzle.  Star Oilco can do a complementary  ASTM and ISO specification analysis of your diesel fuel.  If you are seeing recurring fuel system issue, the first step is to make sure your bulk storage isn’t the problem. We can help.

Tank Testing Form

  • This field is for validation purposes and should be left unchanged.

biodiesel-feedstocks-caster-oil-and-cwg
BioDiesel Feedstocks – Castor Oil & Choice White Grease 1024 721 Star Oilco

BioDiesel Feedstocks – Castor Oil & Choice White Grease

In this post we continue our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report. This week’s two feedstocks are Castor Oil and Choice White Grease. For more information and more feedstocks this is the main page of the feedstocks we have examined so far.

Castor Oil

Castor oil comes from Ricinus communis, known commonly as the castor bean plant. While the castor bean is not a real bean, it is called this due to the shape of the seeds.  These seeds consist of about 45-50% oil. Ricinus communis known commonly as Castor Bean plantRicinus communis is a fast-growing shrub type plant that can reach the size of a small tree. This perennial flowering plant is native to the southeastern Mediterranean Basin, Eastern Africa, and India, but grows easily throughout tropical regions. It is not a cold hardy plant, although in a suitable environment it can become invasive.  Castor bean plants are grown as ornamental plants throughout the world and are used extensively as a decorative plant in parks and public areas. The castor bean plan will grow rapidly in a single season, about 6-10’ tall. Ornamentally, it is most valued for its huge, palmately (having four or more lobes or leaflets radiating from a single point) 5-11 pointed lobes, toothed, glossy green leaves (each to 1-3’ across) and round, spikey, reddish-brown seed capsules. Small cup-shaped, greenish-yellow apetalous (lacking flower petals) spikes which are not particularly showy. Different cultivations of the plant result in dwarf and large plants, some with attractive reddish, bronze or purple leaves and bright and colorful flowers. Castor Beans contain about 45-50% oil

An additional benefit of this source of oil is that it doesn’t impact the food supply. The entire plant is poisonous, but has some reported medicinal uses. Other uses of the plant include being used as an insecticide against some ticks and food for silkworms. Castor oil has been used as a lubricant in engines for years, because of the high heat resistance it has historically been used in two-stroke engines.

 

 

 

 

Castor Oil and Bio-diesel sample

Castor Oil biodiesel Certificate of Analysis

Choice White Grease

The US Department of Agriculture defines Choice White Grease (CWG) as “A specific grade of mostly pork fat defined by hardness, color, fatty acid content, moisture, insolubles, unsaponifiables and free fatty acids.”

CWG is similar to beef tallow that we discussed in a previous week. It is an animal by-product, meaning that they are only produced in relation of raising the animal for meat or food production. As we can see from the picture it is a saturated fat and is at least partially solid at room temperature. This means that the resulting B100 biodiesel will have a higher cloud point.  CWG has historically been used as livestock feed. Additionally, using CWG for biodiesel gives pork producers an additional revenue and outlet for the product, helping elevate the return on investment for these farmers.

Choice White Grease and Bio-diesel sample

Choice White Grease biodiesel Certificate of Analysis

 

Last article for biodiesel feedstocks was Algae Oil and Canola Oil.

biodiesel-feedstocks-caster-oil-and-cwg
BioDiesel Feedstocks – Algae Oil & Canola Oil 1024 721 Star Oilco

BioDiesel Feedstocks – Algae Oil & Canola Oil

This post’s two oils are Algal Oil and Canola Oil.  If you would like to look ahead at some of the other feedstocks that Renewable Energy Group (REG) studied, or if you would like to look a little more in-depth at the comparisons here is the link to the Feedstock and Biodiesel Characteristics Report.   This is the main page of feedstocks we have looked at so far, and last weeks look at Borage Oil & Camelina Oil is here.  B20 Biodiesel (B20 stands for 20% biodiesel and 80% petroleum diesel)  is the drop in solution for reduced emissions in today’s modern diesel engines.  To understand what some of the alternate feedstocks that can be used for biodiesel, we are examining a report that Renewable Energy Group (REG) produced in 2009. All certificates of analysis and results are for B100.

Algal Oil

Algal Oil has a huge potential to be the next source of Biofuel feedstock. Among the many benefits is that algae can be grown in any environment that can contain water, and algae doesn’t carry the negative stigma of using a potential source of food to create a fuel.  In addition, you could use algae to clean up waste water and then use the fats to create the biodiesel. A recent study here is working on that concept. The U.S. Department of Energy has recently invested $2 million dollars into University of Michigan for research into algae as a diesel fuel. (see story here) The goal is to find high yield algae that produce a high grade bio crude for renewable diesel or biodiesel. Here is the YouTube video about the research.

The two diverse samples of crude algal oil, that were used in the report from 2009, were obtained from Solazyme, Inc.  This Company works with algae to produce renewable oils and ingredients for industries. The report doesn’t go into what kinds of algae was used or the process that they used to convert the algae to oil.

Biodiesel Certificate of Analysis for Algae Oil 1 Bio-diesel Certificate of Analysis for Algae Oil 2

Canola Oil

Canola is the seed of the species Brassica napus or Brassica campestris.Canola is the seed of the species Brassica napus Brassica Napus is also known as rape or rapeseed.  The name rape is derived from the Latin word for turnip, rapum.  Brassicaceae is the family of which mustard, cauliflower and cabbage belong.  The name Canola comes from the contraction of Canada and ola, meaning oil.  Developed in 1970s by researchers from the University of Manitoba and Agri-Food Canada, the use of the term Canola means that the oilseed meets certain standards.  The Official Definition of Canola is:

“Seeds of the genus Brassica (Brassica napusBrassica rapa or Brassica juncea) from which the oil shall contain less than 2% erucic acid in its fatty acid profile and the solid component shall contain less than 30 micromoles of any one or any mixture of 3-butenyl glucosinolate, 4-pentenyl glucosinolate, 2-hydroxy-3 butenyl glucosinolate, and 2-hydroxy- 4-pentenyl glucosinolate per gram of air-dry, oil-free solid.”

Government regulation requires Canola oil to to be limited to a maximum of 2% erucic acid these particular samples contains less than two percent erucic acid and the solid component contains less than 30 micromoles per gram of glucosinolates.

According to Reuters, “Rapeseed is the most produced oilseed in the EU.” This trend is gradually shifting to soya beans this article continues to explain. Currently 60 percent of the vegetable oil used in biodiesel comes from rapeseed oil in the EU.

Canola is the seed of the species Brassica napus

Certificate of Analysis from REG for Canola Oil based Bio-diesel

 

 

biodiesel-feedstocks-caster-oil-and-cwg
BioDiesel Feedstocks – Borage Oil & Camelina Oil 1024 721 Star Oilco

BioDiesel Feedstocks – Borage Oil & Camelina Oil

This post continues our deeper look into different types of feedstock that Renewable Energy Group (REG) studied in 2009 in the Feedstock and Biodiesel Characteristics Report.  Different feedstocks give the resulting B100 biodiesel different characteristics.   This week’s two oils are Borage Oil and Camelina Oil.  If you would like to learn more about some of the other feedstocks please visit the main page of feedstocks we have looked at so far.

Borage Oil

Borage oil comes from the plant, Borago officinalis, also known as starflower. Borage officinalis Plant (starflower)The starflower is easily grown in average, dry to medium moisture, well-drained soils in full sun to light shade. In addition this plant tolerates poor soils and drought. It is native to Mediterranean region and is an annual that will continue to propagate itself in a garden by reseeding. The plant grows to 2 to 3 feet tall and the flowers are commonly blue, although pink and white flowers are commonly cultivated.  The flowering season is relatively long from June to September and in milder climates the starflower will bloom for most of the year.

The leaves are edible and the plant is commercially cultivated for its oil.  As a fresh vegetable it is said to have a cucumber-like taste and the flowers have a sweet taste.  It has the highest value of γ-linolenic acid in any readily available specialty oil.

Certificate of Analysis of Borage Oil. Borage Oil sample and Borage Biodiesel sample

Camelina Oil

Camelina oil comes from the plant, Camelina sativa, a member of the mustard family and a distant relative to canola. It is an annual flowering plant that grows well in temperate climates and it also has the common names of gold-of-pleasure and false flax. Camelina SativaThis flowering plant is native to Europe and Central Asian areas. Camelina plants grow from 1 to 3 feet tall, are heavily branched and produce seed pods with many small, oily seeds. Some varieties of camelina contain 38-40 % oil. Camelina can be grown in arid conditions and does not require significant amounts of fertilizer.

According to science direct:

“Camelina is adaptable to many different environmental conditions… Camelina an ideal crop for use on less productive lands and in areas without sufficient rainfall to support other crops. When produced under these circumstances, Camelina would not be displacing crops used for food production and positively addresses the food for fuel debate that often plagues the use of crop oils for fuel production.”

Camelina only requires a short growing season and they are fast growing. In 2009, the Navy purchased 40,000 gallons of jet fuel derived from camelina.

The oil is high in omega-3 fatty acid. This makes the oil great for biofuels and the resulting leftover meal a good option for livestock feed. Other uses for this plant consist of the oils being used in cosmetics, burnt in lamps, and herbal medicine. The seeds are edible and can be eaten raw in salads or mixed with water to create an egg substitute.

 

Camelina Oil Chart - Certificate of Analysis Camelina Oil and Camelina BioDiesel

 

Next weeks biodiesel feedstocks are Algae Oil and Canola Oil.

Bio-diesel and Feed-stock samples at REG
What Types of Feedstock Can Be Used To Make Biodiesel? 700 525 Star Oilco

What Types of Feedstock Can Be Used To Make Biodiesel?

To answer what feedstocks can be used to make biodiesel we need to first answer – What is Biodiesel?

Biodiesel is created through a process called transesterification.  Transecterification is when an alcohol such as methanol or ethanol is added to an oil or fat.  This creates methyl esters and glycerin.  Methyl esters is the scientific name of Biodiesel.  Because biodiesel needs a fat or an oil to start with, this fuel can can be created with any number of feedstocks.  If you would like to learn more about Biodiesel check out this for more questions about biodiesel.

According to the U.S. Office of Energy Efficiency & Renewable Energy:

“A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues  such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. “

Renewable Energy Group (REG) performed a study in 2009 with the support of the Iowa Power Fund Board and the Iowa Office of Energy Independence that tested 36 individual feed-stocks.  Star Oilco will be spotlighting these feedstocks through our blog and our social media. The full report can be found on their site if you would like to read ahead or explore the results in more depth. We hope you find these as interesting as we did!

Bio-diesel and Feed-stock samples at REG

Above photo taken at REG headquarters in Ames, Iowa.

This first blog highlights the following 2 types of feed-stock:

Babussa Oil & Beef Tallow

Babassu Oil

Attalea speciosa

Babassu oil is extracted from the seeds of the babassu palm tree, Attalea speciosa, an evergreen tree growing to 30 m (98ft) by 20 m (65ft) at a slow rate. It is hardy to zone (UK) 10 and is not frost tender. The flowers are pollinated by bees and other insects. The tree is common in Brazil, Mexico, and Honduras; it grows well in areas typically cultivated for coconut or palm. The kernels contain 60-70% oil, appear transparent, and smell like walnuts. In its natural form the oil is liquid at 20-30°C (68 – 86°F). The seeds are edible and the oil is used in margarine, soaps, detergents, lamp oil and skin products. Oil extraction results in a cake containing 15-25% protein (depending on the shell content), which is a valuable feedstuff.

In February 2008, Babassu palm oil and coconut oil were blended with jet fuel to power a Virgin Atlantic Boeing 747 during a test flight from London’s Heathrow to Amsterdam.

Babassu oil is extracted from the seeds of the babassu palm treeBabassu Oil Chart

Beef Tallow

Tallow is a rendered form of the waste fats and greases from processing beef. Rendering is a process by which lipid material is separated from meat tissue and water under heat and pressure. Beef tallow is primarily made up of triglycerides and it is solid at room temperature. The B100 that is created from this source has a very high cloud point. “Cloud point is the temperature at which wax (paraffin) begins to separate when oil chilled to a low temperature, and it serves as an important indicator of practical performance in automotive applications in low temperatures.”  (Source)  The other uses for tallow include animal feed, soap, cooking and in the past, candles.

Beef Tallow Animal tissue is converted to tallow using rendering; a process by which lipid material is separated from meat tissue and water under heat and pressure.Beef Tallow Chart

 

Article 2 Feedstock : Borage Oil & Camelina Oil

Article 3 Feedstock : Algae Oil & Canola Oil.

Article 4 Feedstock : Castor Oil and Choice White Grease

Article 5 Feedstock : Coconut Oil and Coffee Oil

Article 6 Feedstock : Evening Primrose Oil and Fish Oil

Article 7 Feedstocks : Hemp Oil & High IV and Low IV Hepar

Article 8 Feedstocks : Jatropha Oil, Jojoba Oil, & Karania Oil

Article 9 Feedstocks : Lesquerella Oil & Linseed Oil

Article 10 Feedstocks – Moringa Oil & Neem Oil

Article 11 Feedstocks – Palm Oil & Perilla Seed Oil

Article 12 Feedstocks – Poultry Fat & Rice Bran Oil

Article 13 Feedstocks – Soybean Oil & Stillingia Oil

Article 14 Feedstocks – Sunflower Oil & Tung Oil